Predicting Occupant Locations Using Association Rule Mining
نویسندگان
چکیده
Heating, ventilation, air conditioning (HVAC) systems are significant consumers of energy, however building management systems do not typically operate them in accordance with occupant movements. Due to the delayed response of HVAC systems, prediction of occupant locations is necessary to maximize energy efficiency. In this paper we present two approaches to occupant location prediction based on association rule mining which allow prediction based on historical occupant movements and any available real time information, or based on recent occupant movements. We show how association rule mining can be adapted for occupant prediction and evaluate both approaches against existing approaches on two sets of real occupants.
منابع مشابه
Occupant Location Prediction Using Association Rule Mining
HVAC systems are significant consumers of energy, however building management systems do not typically operate them in accordance with occupant movements. Due to the delayed response of HVAC systems, prediction of occupant locations is necessary to maximize energy efficiency. In this paper we present an approach to occupant location prediction based on association rule mining, which allows pred...
متن کاملAccurate Household Occupant Behavior Modeling Based on Data Mining Techniques
An important requirement of household energy simulation models is their accuracy in estimating energy demand and its fluctuations. Occupant behavior has a major impact upon energy demand. However, Markov chains, the traditional approach to model occupant behavior, (1) has limitations in accurately capturing the coordinated behavior of occupants and (2) is prone to over-fitting. To address these...
متن کاملA methodology for identifying and improving occupant behavior in residential buildings
This paper reports the development of a methodology for identifying and improving occupant behavior in existing residential buildings. In this study, end-use loads were divided into two levels (i.e. main and sub-category), and they were used to deduce corresponding two-level user activities (i.e. general and specific occupant behavior) indirectly. The proposed method is based on three basic dat...
متن کاملNumeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کامل